
1

The SCA: Myths vs Reality
Is the SCA what you think it is?

Steve Bernier

Researcher, Project Leader

Advanced Radio Systems

2

OutlineOutline

1. Overview of the Software

Communications Architecture (SCA)

2. Is the SCA too slow ?

3. Is the SCA too fat ?

4. Summary

3

Outline1. SCA Overview

• The SCA was developed to assist in the development

of SDR for the Joint Tactical Radio System (JTRS). As

such, the SCA has been structured to:
– Provide for portability of applications between different SCA

platforms

– Leverage commercials standards to reduce development costs

– Reduce software development time with the ability to reuse design
modules

– Build on evolving commercial frameworks and architectures

• The SCA is not a system specification but an

implementation-independent set of rules that

constrain the design of systems to achieve the above

objectives

4

Outline1. SCA Overview

• Myth #1: The SCA is only for military Radios

– While its true the SCA specification was developed for the US

DoD JTRS program, the reality is the core framework

specification contains no military features at all !

• Myth #2: The SCA is for building Software Defined

Radios

– None of the core framework APIs are radio specific !

– An SCA platform can host any kind of application

• radar, medical imagery, test equipment, etc.

5

Outline1. SCA Overview

• The SCA Core Framework specification (version

2.2.2) is made of five documents:
– Main document (130 pages)

– Appendix B – Application Environment Profile (21 pages)

– Appendix C – IDL (41 pages)

– Appendix D – Domain Profile (64 pages)

– Appendix D – Attachment 2 – Common Properties (4 pages)

• Previous releases of the SCA specification had two

extra documents named Security Supplement and

API Supplement

– These documents were last published in 2001

– The security supplement adds RED/BLACK centric APIs

– The API supplement adds communications/radio centric APIs

6

Radar API

Supplement

Automotive

API

Supplement

JTRS

Waveform

Applications

SCA API

Supplement

1. SCA Overview

SCA Core Framework

SCA Security Supplement

• The SCA is application domain

independent

• API supplements are domain

specific

7

Outline1. SCA Overview

• The SCA specification describes how to create a

platform that can host SCA-compliant applications

– It describes how a platform makes its devices and services

available to applications

– It also describes how applications are deployed

• The SCA describes an architecture capable of doing

what every real-time operating systems does:

– Load and execute applications

– Specify priorities and stack sizes for individual tasks

8

Outline1. SCA Overview

• So what is so unique about the SCA ?

– It is platform independent

• Supports any operating system*, processor, and file system

– It is a scalable distributed system

• Supports single processor applications the same way it

supports multi-processor applications

– An SCA platform can be made of several nodes with

different processor architectures running different operating

systems supporting different file systems

• The most unique attribute of the SCA is that it’s

actually a Component Based Development

architecture !

* OS must meet a subset of POSIX APIs

9

Outline1. SCA Overview

• What is Component Based Development (CBD) ?
– Definition: an architecture which allows the creation,

integration, and re-use of components of program code

– CBD is a new development paradigm where the smallest
unit of software is a component

– With CBD, an application is ‘assembled’ using software
components much like a PCB is populated with hardware
components

• CBD is a very popular paradigm for application
development
– ‘.Net’ (from Microsoft) and ‘EJB’ (from Sun Microsystems)

are two very popular CBD architectures

– The OMG CORBA Component Model (CCM) is another
example of a CBD architecture

10

Outline1. SCA Overview

• Software Component

– Definition: is a small, reusable module of executable code that

performs a well-defined function. It is designed, implemented,

and tested as a unit prior to integration into an application

– It is not a function compiled and stored in a static library; it’s

executable code which provides a service

• A software component is a “black box”

– Application designer is concerned with what a component

does, not how it does it

– Creating an application requires component assembly-level

information; the equivalent of a “spec sheet”

• With the SCA, this information is located in a database called the

“domain profile”

11

Outline1. SCA Overview

• Here’s an example of a component assembly

– FM modulation application

INPUT

DATA

OUTPUT

DATA

data

data

data

AudioDevice

Filter
(High Pass)

Filter
(Low Pass)

DUC

Interpolation

ModulationFM

Squelch Generator

data

data

12

Outline1. SCA Overview

• How is the SCA different as a CBD ?

– As opposed to EJB, the SCA supports native components

– As opposed to .Net, the SCA is platform-independent

– As opposed to CCM, the SCA is device-centric

• Provides fine control over the deployment of components

• With the SCA, a software component can be

packaged with several implementations

– Each implementation is characterized by capacity requirements

(run-time memory, mips, channels, etc.) and capability

requirements (OS, processor, etc.)

13

Outline1. SCA Overview

• Here’s what the definition of an SCA software

component (spec sheet) looks like:

Implementation 1

Implementation 2

Implementation n

...

Component

Descriptor

Property File

Encoder_vxw.a

Encoder_linux.a

Encoder_win.exe

CodeRate: double

encoder.prf.xml
InPort: OctetProducer

OutPort: OctetConsumer

encoder.scd.xmlencoder.spd.xml

14

Outline1. SCA Overview

• In summary, the SCA is a Component Based

Development architecture which is platform-

independent and device-centric

• The SCA is not specific to SDR or military

applications

15

OutlineOutline

1. Overview of the Software

Communications Architecture (SCA)

2. Is the SCA too slow ?

3. Is the SCA too fat ?

4. Summary

16

Outline2. Is the SCA too Slow ?

• In order to measure the speed of the SCA, lets look

at different common use cases for an SCA platform:

– Use Case 1: Booting an SCA platform

– Use Case 2: Installing an application

– Use Case 3: Running an application

• Use Case 1 involves starting a number of SCA

components

– Starting software components means creating a number of

process/tasks

– This is not unique to the SCA, it’s required for any SDR platform

– How fast can your RTOS create/spawn a process/task ?

– How fast can application artifacts be copied from storage

memory to run-time memory ?

17

Outline2. Is the SCA too Slow ?

• Use Case 2 involves loading all the artifacts

associated with an application into storage memory

of an SCA platform

– Again, this is not unique to the SCA

– Depends on the speed of the bus/memory and the size of the

artifacts

– Installation of an application is typically done at the factory

when time is not very critical

18

Outline2. Is the SCA too Slow ?

• Use Case 3 involves starting application software

components

– A target device must be chosen for each component

• This may take some time, but the SCA offers a way of avoiding

run-time decisions

– The chosen implementation for each component must be

loaded into the runtime memory of the target device

• Depends on the speed of the bus/memory

• This can be an issue; not unique to the SCA

• Better SCA implementations can alleviate this problem

19

Outline2. Is the SCA too Slow ?

• Use Case 3 also involves data processing

– SCA application components must communicate with each

other to perform signal processing

– With the SCA, communications are normally implemented

using CORBA

– Application throughput is therefore limited by CORBA

– How fast is CORBA?

20

Outline2. Is the SCA too Slow ?

• CBD requires inter-process communications (IPC)

to allow components to interact

– A software component can run as a process or task

– Cannot assume components always run in a process

• The SCA mandates the use of CORBA as the

primary form of communications between software

components

– CORBA is very scalable and provides a single model for

component communications

• Communications APIs are the same whether components are

across the network, on the same board, or in the same process

– CORBA is COTS

21

Outline2. Is the SCA too Slow ?

• CORBA supports several IPC mechanisms

• However, most commercial CORBA products are

implemented using the Socket IPC mechanism for

TCP/IP

IPC

Client Stub

Client

IPC

Server Skel

Server

22

Outline2. Is the SCA too Slow ?

• Myth #3: CORBA is slow!

– The speed of communications between components is directly

related to the IPC mechanism being used

– Using TCP/IP can be slow and it’s often a bad choice for

embedded systems

– In reality: CORBA is NOT slow but TCP/IP can be.

• Real-time CORBA products typically support

several IPC mechanisms

– UDP, Multicast, Shared Memory, etc.

– Developers can add support for other IPC mechanisms

23

Outline2. Is the SCA too Slow ?

• Using a Real-time ORB makes a great difference!

– For instance, ISR Technologies manufactures an SCA radio

which comes with two applications: Voice over IP and Video

– Using the ORBexpress (i.e. CORBA) and the INTCONN

IPC, they were able to lower the ping delay between two

radios to ~10msec vs ~300 msec for TCP/IP

INTCONN

Client Stub

Client

INTCONN

Server Skel

Server
SCARI++ CF

24

Outline2. Is the SCA too Slow ?

• Is CORBA slow?

– The real question is: How fast is your IPC mechanism?

• If there’s an IPC mechanism that’s fast enough for

your application, then you should use CORBA!

– no learning curve for the IPC

– Provides IPC independence

• if a new and faster IPC becomes available, you can use it without

changing any source code

• Conclusion: The SCA is as fast as the CORBA

product being used

– The SCA does not get involved in the communications between

application components; only CORBA does!

25

OutlineOutline

1. Overview of the Software

Communications Architecture (SCA)

2. Is the SCA too slow ?

3. Is the SCA too fat ?

4. Summary

26

Outline3. Is the SCA too Fat ?

• Here’s a block diagram of an SCA platform

• The SCA requires an operating system capable of

loading new code dynamically

– Many SDRs only use a simple scheduler/kernel which only

supports static images

– Essential to support new applications without rebooting

Operating System

POSIX AEP Device Drivers

SCA CF + SCA Devices/Services

SCA Applications

Processor

27

Outline3. Is the SCA too Fat ?

• The SCA does not require just any OS

– OS must provide a subset of the POSIX APIs

– Essential to enhance application portability

• The SCA Core Framework

– Provides platform control

• Install/launch applications

• Start node components to gain access to devices

– Requires an XML parser

• Xerces-C++ requires 2.6 MB of static footprint and typically

around 4 MB of dynamic footprint

– Requires CORBA generated code

• Static footprint: 750K (ORBexpress) or 3.3 MB (TAO)

28

Outline3. Is the SCA too Fat ?

• SCA Application

– Is an assembly of several software components

– Each component requires CORBA generated code

• Static footprint: 730K for ORBexpress or 3.3M for TAO

• Quantifying the footprint requirement for an SCA

radio is difficult

– Is directly related to the number of software components

required by the platform and the applications

– Currently, a full featured SCA CF and a node with a couple

devices and services will require around 25 MB of footprint

• The Xerces-C++ XML parser will use ~40%

• CORBA generated code ~30%

29

Outline3. Is the SCA too Fat ?

• The CRC AudioEffect demonstrator runs in ~50 MB

of total footprint

– Embedded Planet PPC405 board (EP405), 128MB RAM

– CRC’ SCARI++ CF for INTEGRITY/ORBexpress

– Node description:

• Full featured DeviceManager

• ExecutableDevice

• Log service

– Application with 3 components which perform Echo and Chorus

effect on an input voice signal

– Xerces-C++ XML parser

– INTEGRITY Kernel with POSIX and VFS/NFS support

– ORBexpress Name Service

30

Outline3. Is the SCA too Fat ?

• The ISR JTRS Demo Set requires ~51 MB of total

footprint

– VoIP 256 Kbits/s BFSK, Video Waveform1024 Kbits/s BFSK

– Xilinx Virtex-4 FPGA, 128MB RAM

– CRC’ SCARI++ CF for INTEGRITY/ORBexpress

– Node description:

• DeviceManager, DDCDevice, DUCDevice, EthernetDevice,

FGPAExecutableDevice

– 2 SCA applications of 2 components each

– Xerces-C++ XML parser

– INTEGRITY Kernel with POSIX and VFS/FFS support

– ORBexpress INTCONN support

– ORBexpress Name Service

31

Outline3. Is the SCA too Fat ?

• Is the SCA is too fat?

– Reality: the SCA can be large for a small form factor SDR which

will never be upgraded post-manufacturing

– Won’t fit on a cell phone…yet!

• SCA CF Implementations can be made “lighter”

while maintaining compliance with the SCA

– Its just a question of time…

32

OutlineOutline

1. Overview of the Software

Communications Architecture (SCA)

2. Is the SCA too slow ?

3. Is the SCA too fat ?

4. Summary

33

• The SCA is a Component Based Development

architecture

– Not specific to military SDR

– Can be used for any embedded application

• The SCA can be slow

– Using a Real-Time CORBA product is essential

• The SCA footprint is reasonable and will improve

with time

– 64 MB is enough for many platforms

– The SCA can be made smaller without having to change the

specification

4. Summary

34

Questions ?

35

SCARI++ Software Suite

• CRC offers the most
complete solution for
SCA development
– Development tools

– Monitoring tools

– Core Framework

– Training

– Consulting

– Certification expertise

36

• Team has over 6 years of SCA experience
– CRC trained companies from around the world

– CRC helps companies to gear-up for the SCA market

• CRC’s SCARI++ Core Framework is available for the
most popular operating system and processors

• CRC will soon offer a completely new Eclipse-based
Integrated Development Environment (IDE)

SCARI++ Software Suite

37

• CRC offers an complete Integrated Development
Environment (IDE) for the SCA
– Core Framework Independent

• Implements real-time model validation; prevents
you from creating invalid XML descriptors
– Validation messages are hyperlinked to models

• Provides model re-factoring capabilities
– Common model validation errors can be fixed through

suggested re-factoring

• Can reverse-engineer models for existing
components

• CRC’s development tools have been designed with
an intimate knowledge of the SCA specification

IDE Highlights

38

• Based on the widely adopted Eclipse framework

– Provides platform independence (Windows, MAC, Linux, etc)

– Every major vendor of the embedded domain support Eclipse

– There is a enormous number of plug-ins to choose from to

help with every aspect of software development (code

authoring, documentation, unit test, configuration

management, UML, etc.)

• Simplifies Configuration Management
– Perform CM tasks at the model level instead of at the artifacts

level

IDE Highlights

39

• CRC also provides a Core Framework: SCARI++

– Built from the ground-up for embedded platforms

– Implementation of the SCA version 2.2

– Very portable POSIX implementation

– Implemented with lessons learned from the JTRS Certified

SCARI Core Framework

– Comes with a POSIX Executable Device, an AudioDevice and

demo applications

SCARI++ CF Highlights

40

• Provides extra APIs for introspection

– Optimized way of obtaining deployment information

– Can show established connections during run time

• Supports the deployment of components on

standalone remote Devices

– Devices can be started manually and report to a remote

DeviceManager

• Allows Devices to be collocated in a same address

space

– Dramatically increase rate of communications between Devices

SCARI++ CF Highlights

41

• Transparently optimizes connections so they can be

performed as fast as possible

– Indirect connections are transformed into direct connections

which requires much less CORBA interactions

• Supports orderly shutdown of devices even when

running applications

– A Device can be released or killed while it is running an

application

SCARI++ CF Highlights

42

• Available for different operating systems:
– INTEGRITY

– VxWorks

– Linux

– Yellow Dog

– and soon for LynxOS

• Available for different ORBs:
– ORBexpress

– TAO

SCARI++ CF Highlights

