. * I Communications Centre de recherches
Research Centre sur les communications

Canada Canada
An Agency of Un organisme
Industry Canada dindustie Canada

The SCA: Myths vs Reality

Is the SCA what you think it is?

Steve Bernier

Researcher, Project Leader
W Advanced Radio Systems
%+ Canada =
o CENTRE it RECk&xzétafé‘, ' b !

1. Overview of the Software
Communications Architecture (SCA)

2. Is the SCA too slow ?

3. Is the SCA too fat ?

4. Summary

1. SCA Overview

« The SCA was developed to assist in the development
of SDR for the Joint Tactical Radio System (JTRS). As

such, the SCA has been structured to:

— Provide for portability of applications between different SCA
platforms

— Leverage commercials standards to reduce development costs

— Reduce software development time with the ability to reuse design
modules

— Build on evolving commercial frameworks and architectures

« The SCA is not a system specification but an
Implementation-independent set of rules that
constrain the design of systems to achieve the above

bjectives

1. SCA Overview

« Myth #1: The SCA is only for military Radios

— While its true the SCA specification was developed for the US

DoD JTRS program, the reality is the core framework
specification contains no military features at all !

« Myth #2: The SCA is for building Software Defined
Radios
— None of the core framework APIs are radio specific !

— An SCA platform can host any kind of application
« radar, medical imagery, test equipment, etc.

1. SCA Overview

The SCA Core Framework specification (version

2.2.2) Is made of five documents:

— Main document (130 pages)

— Appendix B — Application Environment Profile (21 pages)

— Appendix C — IDL (41 pages)

— Appendix D — Domain Profile (64 pages)

— Appendix D — Attachment 2 — Common Properties (4 pages)

Previous releases of the SCA specification had two
extra documents named Security Supplement and
API| Supplement

— These documents were last published in 2001
~— The security supplement adds RED/BLACK centric APIs
— The API supplement adds communications/radio centric APIs

1. SCA Overview

« The SCA is application domain
Independent RS

« API supplements are domain Waveform
specific Applications

Sepken mE | | AVEEIRELE SCA API

API
Supplement Supplement Supplement

1. SCA Overview

« The SCA specification describes how to create a
platform that can host SCA-compliant applications

— It describes how a platform makes its devices and services
available to applications

— It also describes how applications are deployed

« The SCA describes an architecture capable of doing
what every real-time operating systems does:
— Load and execute applications
— Specify priorities and stack sizes for individual tasks

1. SCA Overview

« So what is so unique about the SCA ?

— Itis platform independent
« Supports any operating system*, processor, and file system

— It is a scalable distributed system

« Supports single processor applications the same way it
supports multi-processor applications

— An SCA platform can be made of several nodes with
different processor architectures running different operating
systems supporting different file systems

 The most unique attribute of the SCA is that it’s
actually a Component Based Development

% architecture !
‘ N\ -.:t.

\h v
\

f'ﬁ : CCENTRE o RECHERCHES <t * OS must meet a subset of POSIX APIs

(N

1. SCA Overview

« What is Component Based Development (CBD) ?

— Definition: an architecture which allows the creation,
Integration, and re-use of components of program code

— CBD is a new development paradigm where the smallest
unit of software is a component

— With CBD, an application is ‘assembled’ using software

components much like a PCB is populated with hardware
components

« CBD s avery popular paradigm for application
development

— ‘“.Net’ (from Microsoft) and ‘EJB’ (from Sun Microsystems)
are two very popular CBD architectures

— The OMG CORBA Component Model (CCM) is another

w‘ example of a CBD architecture
L \ ..,.

‘\)'

1. SCA Overview

« Software Component

— Definition: is a small, reusable module of executable code that
performs a well-defined function. It is designed, implemented,
and tested as a unit prior to integration into an application

— Itis not a function compiled and stored in a static library; it's
executable code which provides a service

A software component is a “black box”

— Application designer is concerned with what a component
does, not how it does it

— Creating an application requires component assembly-level
information; the equivalent of a “spec sheet”

 With the SCA, this information is located in a database called the
“‘domain profile”

1. SCA Overview

« Here’s an example of a component assembly
— FM modulation application

INPUT

OUTPUT
DATA

1. SCA Overview

« How is the SCA different as a CBD ?
— As opposed to EJB, the SCA supports native components
— As opposed to .Net, the SCA is platform-independent

— As opposed to CCM, the SCA is device-centric
* Provides fine control over the deployment of components

 With the SCA, a software component can be
packaged with several implementations

— Each implementation is characterized by capacity requirements
(run-time memory, mips, channels, etc.) and capability
requirements (OS, processor, etc.)

1. SCA Overview

e Here’s what the definition of an SCA software
component (spec sheet) looks like:

encoder.spd.xml encoder.scd.xml

Component

Descriptor InPort: OctetProducer

OutPort: OctetConsumer

1. SCA Overview

 |In summary, the SCA is a Component Based
Development architecture which is platform-
iIndependent and device-centric

« The SCA is not specific to SDR or military
applications

1.

Overview of the Software
Communications Architecture (SCA)

. Is the SCA too slow ?

. Is the SCA too fat ?

. Summary

2. Is the SCA too Slow ?

 |In order to measure the speed of the SCA, lets look
at different common use cases for an SCA platform:
— Use Case 1: Booting an SCA platform
— Use Case 2: Installing an application
— Use Case 3: Running an application

« Use Case 1 involves starting a number of SCA
components

— Starting software components means creating a number of
process/tasks

— This is not unique to the SCA, it's required for any SDR platform
— How fast can your RTOS create/spawn a process/task ?

How fast can application artifacts be copied from storage
memory to run-time memory ?

2. Is the SCA too Slow ?

« Use Case 2 involves loading all the artifacts
associated with an application into storage memory
of an SCA platform
— Again, this is not unique to the SCA

— Depends on the speed of the bus/memory and the size of the
artifacts

— Installation of an application is typically done at the factory
when time is not very critical

2. Is the SCA too Slow ?

« Use Case 3 involves starting application software

components

— Atarget device must be chosen for each component

« This may take some time, but the SCA offers a way of avoiding
run-time decisions

— The chosen implementation for each component must be
loaded into the runtime memory of the target device
 Depends on the speed of the bus/memory
« This can be an issue; not unique to the SCA
« Better SCA implementations can alleviate this problem

2. Is the SCA too Slow ?

« Use Case 3 also involves data processing

SCA application components must communicate with each
other to perform signal processing

With the SCA, communications are normally implemented
using CORBA

Application throughput is therefore limited by CORBA
How fast is CORBA?

2. Is the SCA too Slow ?

« CBD requires inter-process communications (IPC)
to allow components to interact
— A software component can run as a process or task
— Cannot assume components always run in a process

« The SCA mandates the use of CORBA as the
primary form of communications between software
components

— CORBA s very scalable and provides a single model for
component communications

« Communications APIs are the same whether components are
across the network, on the same board, or in the same process

'? — CORBAIs COTS
L Y \-\ : :%.

2. Is the SCA too Slow ?

CORBA supports several IPC mechanisms

However, most commercial CORBA products are
Implemented using the Socket IPC mechanism for

‘FERR

Client

Client Stub 1
IPC

t Server Skel

IPC

2. Is the SCA too Slow ?

« Myth #3. CORBA is slow!

— The speed of communications between components is directly
related to the IPC mechanism being used

— Using TCP/IP can be slow and it’s often a bad choice for
embedded systems

— Inreality: CORBA s NOT slow but TCP/IP can be.

 Real-time CORBA products typically support
several IPC mechanisms

— UDP, Multicast, Shared Memory, etc.
— Developers can add support for other IPC mechanisms

2. Is the SCA too Slow ?

 Using a Real-time ORB makes a great difference!

— For instance, ISR Technologies manufactures an SCA radio
which comes with two applications: Voice over IP and Video

— Using the ORBexpress (i.e. CORBA) and the INTCONN
IPC, they were able to lower the ping delay between two
radios to ~10usec vs ~300 usec for TCP/IP

iSR <2

TECHNOLOGIES SCARI++ CF

Yy um E " Client Stub 1 't Server Skel |
Green Hhills | ook, INTCONN INTCONN

5.3‘%.“

2. Is the SCA too Slow ?

« |s CORBA slow?
— The real question is: How fast is your IPC mechanism?

« [|f there’s an IPC mechanism that’s fast enough for
your application, then you should use CORBA!
— no learning curve for the IPC

— Provides IPC independence
« if a new and faster IPC becomes available, you can use it without
changing any source code

e Conclusion: The SCA iIs as fast as the CORBA

product being used
The SCA does not get involved in the communications between
application components; only CORBA does!

1.

Overview of the Software
Communications Architecture (SCA)

. Is the SCA too slow ?

. Is the SCA too fat ?

. Summary

3. Is the SCA too Fat?

« Here’s a block diagram of an SCA platform

SCA Applications
SCA CF + SCA Devices/Services
POSIX AEP Device Drivers
Operating System
Processor

« The SCA requires an operating system capable of
loading new code dynamically

— Many SDRs only use a simple scheduler/kernel which only
supports static images

&..i ¥ . — Essential to support new applications without rebooting

.‘\r

3. Is the SCA too Fat?

« The SCA does not require just any OS
— OS must provide a subset of the POSIX APIs
— Essential to enhance application portability

e The SCA Core Framework

— Provides platform control

« Install/launch applications

« Start node components to gain access to devices
— Requires an XML parser

« Xerces-C++ requires 2.6 MB of static footprint and typically
around 4 MB of dynamic footprint

— Requires CORBA generated code
« Static footprint: 750K (ORBexpress) or 3.3 MB (TAO)

3. Is the SCA too Fat?

« SCA Application
— Is an assembly of several software components

— Each component requires CORBA generated code
« Static footprint: 730K for ORBexpress or 3.3M for TAO

 Quantifying the footprint requirement for an SCA
radio is difficult

— Is directly related to the number of software components
required by the platform and the applications

— Currently, a full featured SCA CF and a node with a couple
devices and services will require around 25 MB of footprint

» The Xerces-C++ XML parser will use ~40%

« CORBA generated code ~30%

3. Is the SCA too Fat?

« The CRC AudioEffect demonstrator runs in ~50 MB
of total footprint
— Embedded Planet PPC405 board (EP405), 128MB RAM
— CRC’ SCARI++ CF for INTEGRITY/ORBexpress

— Node description:
* Full featured DeviceManager
* ExecutableDevice
* Log service

— Application with 3 components which perform Echo and Chorus
effect on an input voice signal

— Xerces-C++ XML parser
— INTEGRITY Kernel with POSIX and VFS/NFS support
- — ORBexpress Name Service

3. Is the SCA too Fat?

« The ISR JTRS Demo Set requires ~51 MB of total
footprint
— VoIP 256 Kbits/s BFSK, Video Waveform1024 Kbits/s BFSK
— Xilinx Virtex-4 FPGA, 128MB RAM
— CRC’ SCARI++ CF for INTEGRITY/ORBexpress

— Node description:

« DeviceManager, DDCDevice, DUCDevice, EthernetDevice,
FGPAEXxecutableDevice

— 2 SCA applications of 2 components each
— Xerces-C++ XML parser
— INTEGRITY Kernel with POSIX and VFS/FFS support
— ORBexpress INTCONN support
- — ORBexpress Name Service

3. Is the SCA too Fat?

e |sthe SCA iIs too fat?

— Reality: the SCA can be large for a small form factor SDR which
will never be upgraded post-manufacturing

— Won't fit on a cell phone...yet!

« SCA CF Implementations can be made “lighter”
while maintaining compliance with the SCA

— Its just a question of time...

1.

Overview of the Software
Communications Architecture (SCA)

. Is the SCA too slow ?

. Is the SCA too fat ?

. Summary

« The SCA is a Component Based Development
architecture
— Not specific to military SDR
— Can be used for any embedded application

« The SCA can be slow
— Using a Real-Time CORBA product is essential

« The SCA footprint is reasonable and will improve
with time

— 64 MB is enough for many platforms

— The SCA can be made smaller without having to change the
specification

Questions ?

SCARI++ Software Suite

 CRC offers the most
complete solution for
SCA development
— Development tools
— Monitoring tools
— Core Framework
— Training
— Consulting
— Certification expertise

SCARI++ Software Suite

« Team has over 6 years of SCA experience
— CRC trained companies from around the world
— CRC helps companies to gear-up for the SCA market

« CRC’s SCARI++ Core Framework is available for the
most popular operating system and processors

« CRC will soon offer a completely new Eclipse-based
Integrated Development Environment (IDE)

IDE Highlights

« CRC offers an complete Integrated Development
Environment (IDE) for the SCA

— Core Framework Independent

* Implements real-time model validation; prevents
you from creating invalid XML descriptors

— Validation messages are hyperlinked to models

 Provides model re-factoring capabilities

— Common model validation errors can be fixed through
suggested re-factoring

« Can reverse-engineer models for existing
components

CRC’s development tools have been designed with
an intimate knowledge of the SCA specification

IDE Highlights

« Based on the widely adopted Eclipse framework
— Provides platform independence (Windows, MAC, Linux, etc)
— Every major vendor of the embedded domain support Eclipse

— There is a enormous number of plug-ins to choose from to
help with every aspect of software development (code
authoring, documentation, unit test, configuration
management, UML, etc.)

« Simplifies Configuration Management

— Perform CM tasks at the model level instead of at the artifacts
level

SCARI++ CF Highlights

« CRC also provides a Core Framework: SCARI++

— Built from the ground-up for embedded platforms

— Implementation of the SCA version 2.2

— Very portable POSIX implementation

— Implemented with lessons learned from the JTRS Certified
SCARI Core Framework

— Comes with a POSIX Executable Device, an AudioDevice and
demo applications

SCARI++ CF Highlights

 Provides extra APIs for introspection
— Optimized way of obtaining deployment information
— Can show established connections during run time

 Supports the deployment of components on
standalone remote Devices

— Devices can be started manually and report to a remote
DeviceManager

« Allows Devices to be collocated in a same address

space
— Dramatically increase rate of communications between Devices

SCARI++ CF Highlights

« Transparently optimizes connections so they can be
performed as fast as possible

— Indirect connections are transformed into direct connections
which requires much less CORBA interactions

« Supports orderly shutdown of devices even when
running applications

— A Device can be released or killed while it is running an
application

SCARI++ CF Highlights

« Available for different operating systems:

— INTEGRITY

— VXWorks

— Linux

— Yellow Dog

— and soon for LynxOS

 Avalilable for different ORBSs:
— ORBexpress
— TAO

WIND RIVER

-n|I'||||."w|||t||||fm,.

Green Hills®

*SOFTWARE, INC.~

INTEGRITY

' . .

OBJECTIVE
INTERFACE

